jump to navigation

Friday Philosophy – The start of Computing October 7, 2011

Posted by mwidlake in Friday Philosophy, history.
Tags: , , ,

This week I finally made a visit to Bletchley Park in the middle of England. Sue and I have been meaning to go there for several years, it is the site of the British code-breaking efforts during the second world war and, despite difficulties getting any funding, there has been a growing museum there for a number of years. {Hopefully, a grant from the Heritage Lottery Fund, granted only this month, will secure it’s future}.

Why is Bletchley Park so significant? Well, for us IT-types it is significant because Alan Turing did a lot of work there and it was the home of Colossus, one of the very first electrical, programmable computers. More generally of interrest, their efforts and success in cracking enemy ciphers during WW2 were incredibly important and beneficial to the UK and the rest of the allies.

In this post, I am not going to touch on Colossus or Alan Turing, but rather a machine called the “Bombe”. The Bombe was used to help discover the daily settings of the German Enigma machines, used for decrypting nearly all German and Italian radio messages. All the Bombes were destroyed after the war (at least, all the UK ones were) to help keep secret the work done to crack the cyphers – but at Bletchley Park the volunteers have recreated one. Just like the working model of Babbage’s Difference Engine, it looks more like a work of art than a machine. Here is a slightly rough video I took of it in action:

My slightly rough video of the bombe

{OK, if you want a better video try a clearer video by someone else.}

I had a chat with the gentleman you see in both videos about the machine and he explained something that the tour we had just been on did not make clear – the Bombe is a parallel processing unit. Enigma machines have three wheels. There are banks of three coloured disks in the bombe (see the picture below). eg, in the middle bank the top row of disks are black, middle are yellow and bottom are red. Each vertical set of three disks, black-yellow-red, is the equivalent of a single “enigma machine”. Each trio of disks is set to different starting positions, based on educated guesses as to what the likely start positions for a given message might be. The colour of the disk matches, I think, one of the known sets of wheels the enigma machines could be set up with. The machine is then set to run the encrypted message through up to 36 “Enigmas” at once. If the output exceeds a certain level of sense (in this case quite crucially, no letter is every encrypted back to itself) then the settings might be correct and are worth further investigation. This machine has been set up with the top set of “Enigmas” not in place, either to demonstrate the workings or because the machine is set up for one of the more complex deciphering attempts where only some of the banks can be used.

This is the bombe seen from the front

The reason the chap I was talking to really became fascinated with this machine is that, back in about 1999, a home PC programmed to do this work was no faster than the original electro-mechanical machines from 1944 were supposed to have taken. So as an engineer he wanted to help build one and find out why it was so fast. This struck a chord with me because back in the late 1990′s I came across several examples of bespoke computers designed to do specific jobs (either stuff to do with natural gas calorific value, DNA matching or protein folding), but by 2000, 2002 they had all been abandoned as a general PC could be programmed to be just as fast as these bespoke machines – because bespoke means specialist means longer and more costly development time means less bangs for your buck.

Admittedly the Bombe is only doing one task, but it did it incredibly fast, in parallel, and as a part of the whole deciphering process that some of the best minds of their time had come up with (part of the reason the Bletchley Park site was chosen was that it was equidistant between Oxford and Cambridge and, at that time, there were direct train links. {Thanks, Dr Beeching}. ).

Tuning and reliability was as important then as it is now. In the below picture of the back of the machine (sorry about the poor quality, it was dim in that room), you can see all the complex wiring in the “door” and, in the back of the machine itself, those three rows of bronze “pipes” are in fact…Pipes. Oil pipes. This is a machine, they quickly realised that it was worth a lot of effort to keep those disks oiled, both for speed and reliability.

All the workings of the Bombe from the back

Talking of reliability, one other thing my guide said to me. These machines are complex and also have some ability to cope with failures or errors built into them. But of course, you needed to know they were working properly. When these machines were built and set up, they came with a set of diagnostic tests. These were designed to push the machine, try the edge cases and to be as susceptible to mechanical error as possible. The first thing you did to a new or maintained machine was run your tests.

1943, you had awesome parallel processing, incredible speed and test-driven development and regression testing. We almost caught up with all of this in the early 21st Century.

About these ads


No comments yet — be the first.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


Get every new post delivered to your Inbox.

Join 152 other followers

%d bloggers like this: